Neural networks for data mining: constrains and open problems
نویسندگان
چکیده
When we talk about using neural networks for data mining we have in mind the original data mining scope and challenge. How did neural networks meet this challenge? Can we run neural networks on a dataset with gigabytes of data and millions of records? Can we provide explanations of discovered patterns? How useful that patterns are? How to distinguish useful, interesting patterns automatically? We aim to summarize here the state-of-the-art of the principles beyond using neural models in data mining. 1 What is special in data mining applications? Data mining (DM) is the nontrivial extraction of implicit, previously unknown, interesting, and potentially useful information (usually in the form of knowledge patterns or models) from data. Historically data mining has grown from large business database applications, such as finding patterns in customer purchasing activities from transactions databases. Original DM problems were to adjust known methods such as decision trees and neural networks (NN) to large datasets (100,000 and more records) and relational database structures. Later methods such as association rules were developed specifically motivated by DM challenge. The most vehiculated DM problems are reduced to traditional statistical and machine leaning methods: classification, prediction, association rule extraction, and sequence detection. The techniques used in DM are very heterogeneous: statistical methods, case-based reasoning, NN, decision trees, rule induction, Bayesian networks, fuzzy sets, rough sets, genetic algorithms/evolutionary programming. The following are the major stages in solving a DM problem [7]: 1. Define the problem. 2. Collect and select data, such as deciding which data to collect and how to collect them. 1. Define the problem 2. Collect/select data
منابع مشابه
Multi-View Face Detection in Open Environments using Gabor Features and Neural Networks
Multi-view face detection in open environments is a challenging task, due to the wide variations in illumination, face appearances and occlusion. In this paper, a robust method for multi-view face detection in open environments, using a combination of Gabor features and neural networks, is presented. Firstly, the effect of changing the Gabor filter parameters (orientation, frequency, standard d...
متن کاملPrediction of Blasting Cost in Limestone Mines Using Gene Expression Programming Model and Artificial Neural Networks
The use of blasting cost (BC) prediction to achieve optimal fragmentation is necessary in order to control the adverse consequences of blasting such as fly rock, ground vibration, and air blast in open-pit mines. In this research work, BC is predicted through collecting 146 blasting data from six limestone mines in Iran using the artificial neural networks (ANNs), gene expression programming (G...
متن کاملA Proposed Data Mining Methodology and its Application to Industrial Procedures
Data mining is the process of discovering correlations, patterns, trends or relationships by searching through a large amount of data stored in repositories, corporate databases, and data warehouses. Industrial procedures with the help of engineers, managers, and other specialists, comprise a broad field and have many tools and techniques in their problem-solving arsenal. The purpose of this st...
متن کاملEstimation of the Ampere Consumption of Dimension Stone Sawing Machine Using of Artificial Neural Networks
Nowadays, estimating the ampere consumption and achieve to the optimum condition from the perspective of energy consumption is one of the most important steps to reduce the production costs. In this research it is tried to develop an accurate model for estimating the ampere consumption by using the artificial neural networks (ANN).In the first step, experimental studies were carried out on 7 ca...
متن کاملThe Application of Combined Fuzzy Clustering Model and Neural Networks to Measure Valuably of Bank Customers
Currently, acquisition of resources in banks is subject to attraction of the resources of banking customers. Meanwhile, the Bank’s valuable customers are one of the best resources to make profit for banks. Several different models are introduced for evaluation of profitability of the customers; but most of them are classical models and they are unable to evaluate the customers in complete and o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004